skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "GRUN, TOBIAS B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Figuerola, Blanca (Ed.)
    The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (i.e., by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assessin situthe effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness. Live specimens of sand dollars and sea biscuits (Mellita tenuis,Encopespp.,Leodia sexiesperforata, andClypeaster subdepressus) were collected from three different salinity regimes: (1) a coastal region of Cedar Key influenced by freshwater input from Suwannee River, with low and fluctuating salinity; (2) St. James Bay with less fluctuating, higher salinity; and (3) Florida Keys with stable, fully marine salinity conditions. No clear relationship was found between the bulk skeletal barium/calcium (Ba/Ca), zinc/calcium (Zn/Ca), sodium/calcium (Na/Ca), cadmium/calcium (Cd/Ca), copper/calcium (Cu/Ca), phosphorous/calcium (P/Ca), lead/calcium (Pb/Ca), boron/calcium (B/Ca), manganese/calcium (Mn/Ca) ratios pooled across all taxa. In contrast, bulk Mg/Ca, strontium/calcium (Sr/Ca), sulfur/calcium (S/Ca) and lithium/calcium (Li/Ca) ratios exhibited notable differences between the three regions, indicating that distribution of these elements can be at least partly influenced by environmental factors such as salinity. However, such patterns were highly variable across taxa and regions, indicating that both environmental and physiological factors influenced geochemical signatures to varying degrees, depending on the species and environmental setting. In addition, regardless of species identity, different types of stereom within single tests were characterized by distinct skeletal Mg/Ca ratios and nanohardness. The inner galleried and coarse labyrinthic stereom typically exhibited a lower Mg/Ca ratio and nanohardness than the outer imperforate stereom layer that locally forms tubercles. Such heterogeneity in Mg distribution within single specimens cannot be ascribed solely to environmental changes, indicating that these echinoids actively regulate their intraskeletal Mg content: the higher magnesium concentration at the tubercles relative to that of the underlying stereom may be interpreted as a strategy for enhancing their mechanical strength to withstand surface friction and wear. The results suggest that the trace element composition of echinoid tests is a complex outcome of environmental and physiological factors. 
    more » « less
    Free, publicly-accessible full text available January 24, 2026
  2. Background Irregular echinoids are ecosystem engineers with diverse functional services. Documenting present-day distribution of those widespread organisms is important for understanding their ecological significance and enhancing our ability to interpret their rich fossil record. Methods This study summarizes SCUBA surveys of clypeasteroid and spatangoid echinoids conducted in 2020 and 2021 along the central part of the Florida Keys. The survey included observations on both live and dead specimens, their distribution, habitat preferences, abundance, and live-dead comparison. Results Echinoids were found at 17 out of 27 examined sites (63%) and occurred across a wide range of habitats including coastal seagrass meadows, subtidal sand and seagrass settings of the Hawk Channel, backreef sands, and fine muddy sands of deeper forereef habitats. The encountered species, both dead and alive, included Clypeaster rosaceus (four sites), Clypeaster subdepressus (five sites), Encope michelini (three sites), Leodia sexiesperforata (eight sites), Meoma ventricosa (nine sites), and Plagiobrissus grandis (four sites). All sites were dominated by one species, but some sites included up to five echinoid species. Live-dead fidelity was high, including a good agreement in species composition of living and dead assemblages, congruence in species rank abundance, and overlapping spatial distribution patterns. This high fidelity may either reflect long-term persistence of local echinoid populations or fragility of echinoid tests that could prevent post-mortem transport and the formation of time-averaged death assemblages. Regardless of causative factors, the live-dead comparisons suggest that irregular echinoid assemblages, from settings that are comparable to the study area, may provide a fossil record with a high spatial and compositional fidelity. The survey of live fauna is consistent with past regional surveys in terms of identity of observed species, their rank abundance, and their spatial distribution patterns. The results suggest that despite increasingly frequent hurricanes, active seasonal fisheries, massive tourism, and urban development, irregular echinoids continue to thrive across a wide range of habitats where they provide diverse ecosystem services by oxygenating sediments, recycling organic matter, supporting commensal organisms, and providing food to predators. Results reported here document the present-day status of local echinoid populations and should serve as a useful reference point for assessing future regional changes in echinoid distribution and abundance. 
    more » « less
  3. ABSTRACT The infaunal living clypeasteroid echinoid genus Echinocyamus is considered a model organism for various ecological and paleontological studies since its distribution ranges from the polar regions to the tropics, and from shallow-marine settings to the deep-sea. Deep-sea analyses of this genus are rare, but imperative for the understanding and function of these important ecosystems. During the 2012 Southern Surveyor expedition, 35 seamounts off the east coast of Australia were dredged in depths greater than 800 m. Of these, six dredges contained a total of 18 deep-sea Echinocyamus tests. The tests have been analyzed for taphonomic alterations including abrasion patterns, macro-borings, micro-borings, depressions on the test, test staining, test filling, encrustation, and fragmentation. Findings are interpreted in the context of the deep-sea setting and are compared to Echinocyamus samples from shallow-water environments. Results show that abrasion in deep-sea environments is generally high, especially in ambulacral and genital pores indicating that tests can persist for a long time on the seafloor. This contrasts with shallow-water Echinocyamus that show lower abrasion due to early test destruction. Macro-borings are present as single or paired holes with straight vertical profiles resembling Lithophaga borings. Micro-borings are abundant and most likely the result of sponge or fungal activity. Depressions on the tests, such as scars or pits, are likely the result of trauma or malformation during ontogeny. Test staining is common, but variable, and is associated with FE/Mn oxidation and authigenic clays based on elemental analyses. Test filling occurs as loose or lithified sediment. Encrustation is present in the form of rudimentary crusts and biofilms. No macro-organisms were found on the tests. Biofilm composition differs from shallow-water environments in that organisms captured in the biofilm reflect aphotic conditions or sedimentation of particles from higher in the water column (e.g., coccoliths). Fragmentation is restricted to the apical system and pore regions. Results of this first comparative study on deep-sea Echinocyamus from Australian seamounts show that the minute tests can survive for a long time in these settings and undergo environmental specific taphonomic processes reflected in various taphonomic alterations. 
    more » « less
  4. Predation traces found on fossilized prey remains can be used to quantify the evolutionary history of biotic interactions. Fossil mollusc shells bearing these types of traces provided key evidence for the rise of predation during the Mesozoic marine revolution (MMR), an event thought to have reorganized global marine ecosystems. However, predation pressure on prey groups other than molluscs has not been explored adequately. Consequently, the ubiquity, tempo and synchronicity of the MMR cannot be thoroughly assessed. Here, we expand the evolutionary record of biotic interactions by compiling and analysing a new comprehensively collected database on drilling predation in Meso-Cenozoic echinoids. Trends in drilling frequency reveal an Eocene rise in drilling predation that postdated echinoid infaunalization and the rise in mollusc-targeted drilling (an iconic MMR event) by approximately 100 Myr. The temporal lag between echinoid infaunalization and the rise in drilling frequencies suggests that the Eocene upsurge in predation did not elicit a coevolutionary or escalatory response. This is consistent with rarity of fossil samples that record high frequency of drilling predation and scarcity of fossil prey recording failed predation events. These results suggest that predation intensification associated with the MMR was asynchronous across marine invertebrate taxa and represented a long and complex process that consisted of multiple uncoordinated steps probably with variable coevolutionary responses. 
    more » « less
  5. ABSTRACT Interactions with predators and parasites can result in traces found on Recent and fossil echinoids. However, identifying specific trace makers, particularly on fossil echinoids, remains contentious. To document the range of trace morphologies present on echinoids and improve our ability to identify and quantify biotic interactions affecting echinoids, we characterized traces found on fossil echinoids using museum collections and field sampling spanning the Jurassic to Recent worldwide. Using light microscopy, 8,564 individual echinoid specimens were examined including 130 species, and 516 traces of potential biotic interactions identified. Morphological characteristics were recorded for each trace, including the shape of the trace outline, maximum diameter and cross-section profile. Based on shared morphological characteristics, it was possible to classify all traces into eight categories: circular, subcircular, elongated, irregular, rectangular, figure-eight, notched, and linear. Cross-section characteristics provided additional insights into the identity of potential trace makers. To further evaluate the proposed biotic origins of these traces, trace diversity was examined through time and compared with anticipated ecological trends associated with the diversification of echinoids, and their predators and parasites. Trace diversity increased over time, starting in the late Eocene, coincident with the proliferation of echinoid-drilling gastropods, an indication that biotic interactions intensified through evolutionary time, as predicted by several macroevolutionary hypotheses previously tested using mollusks. The morphological descriptions provided here enhance our understanding of biotic traces on fossil echinoids, and the potential to identify temporal trends in the intensity and diversity of biotic interactions that have affected echinoids throughout their evolutionary history. 
    more » « less
  6. Abstract The endoskeleton of echinoderms ( Deuterostomia: Echinodermata ) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour and functional design. The sea urchin ( Echinodermata: Echinoidea ) endoskeleton consists of three main structural components: test, dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure–function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies. 
    more » « less